Advertisement

‘Seeing the unseeable’: Scientists unveil first photo of a black hole

Click to play video: 'Scientists unveil first image of a black hole'
Scientists unveil first image of a black hole
WATCH LIVE: Scientists unveil first image of a black hole – Apr 10, 2019

An international scientific team on Wednesday announced a milestone in astrophysics – the first-ever photo of a black hole – using a global network of telescopes to gain insight into celestial objects with gravitational fields so strong no matter or light can escape.

The team’s observations of the black hole at the center of Messier 87, a massive galaxy in the nearby Virgo galaxy cluster, lend strong support to the theory of general relativity put forward in 1915 by physicist Albert Einstein to explain the laws of gravity and their relation to other natural forces.

The research was conducted by the Event Horizon Telescope (EHT) project, an international collaboration begun in 2012 to try to directly observe the immediate environment of a blackhole using a global network of Earth-based telescopes. The announcement was made in simultaneous news conferences in Washington, Brussels, Santiago, Shanghai, Taipei and Tokyo.

WATCH: First image released of a giant black hole in a distant galaxy

Click to play video: 'First image released of a giant black hole in a distant galaxy'
First image released of a giant black hole in a distant galaxy

The team includes Avery Broderick, an astrophysicist at the Perimeter Institute in Waterloo, Ont., which contributes to the EHT project.

Story continues below advertisement

“We have achieved something presumed to be impossible just a generation ago,” said astrophysicist Sheperd Doeleman, director of the Event Horizon Telescope at the Center for Astrophysics, Harvard & Smithsonian.

Breaking news from Canada and around the world sent to your email, as it happens.

This black hole resides about 54 million light-years from Earth. A light year is the distance light travels in a year, 5.9 trillion miles (9.5 trillion km).

Black holes, phenomenally dense celestial entities, are extraordinarily difficult to observe despite their great mass. A black hole‘s event horizon is the point of no return beyond which anything – stars, planets, gas, dust and all forms of electromagnetic radiation – gets swallowed into oblivion.

The Event Horizon Telescope captured the first picture of a black hole — this one is in the Virgo A galaxy, called M87. The picture was released on April 10, 2019. (National Science Foundation). Handout / National Science Foundation

“This is a huge day in astrophysics,” said U.S. National Science Foundation Director France Córdova. “We’re seeing the unseeable.”

The fact that black holes do not allow light to escape makes viewing them difficult. The scientists look for a ring of light – disrupted matter and radiation circling at tremendous speed at the edge of the event horizon – around a region of darkness representing the actual black hole. This is known as the black hole‘s shadow or silhouette.

Story continues below advertisement
Astrophysicist Dimitrios Psaltis of the University of Arizona, the EHT project scientist, said, “The size and shape of the shadow matches the precise predictions of Einstein’s general theory of relativity, increasing our confidence in this century-old theory.”“Imaging a black hole is just the beginning of our effort to develop new tools that will enable us to interpret the massively complex data that nature gives us,” Psaltis added.WATCH: ‘Turning Earth into a virtual telescope’ How scientists took the first photo of a black hole
Click to play video: '‘Turning Earth into a virtual telescope’ How scientists took the first photo of a black hole'
‘Turning Earth into a virtual telescope’ How scientists took the first photo of a black hole
​The project’s researchers obtained the first data in April 2017 using telescopes in the U.S. states of Arizona and Hawaii as well as in Mexico, Chile, Spain and Antarctica. Since then, telescopes in France and Greenland have been added to the global network. The global network of telescopes has essentially created a planet-sized observational dish. (Reporting by Will Dunham; Editing by Sandra Maler and Paul Simao)

One of the black holes – Sagittarius A* – is situated at the center of our own Milky Way galaxy, possessing 4 million times the mass of our sun and located 26,000 light years from Earth. A light year is the distance light travels in a year, 5.9 trillion miles (9.5 trillion km).

The second one – M87 – inhabits the center of the neighboring Virgo A galaxy, boasting a mass 3.5 billion times that of the sun and located 54 million light-years away from Earth. Streaming away from M87 at nearly the speed of light is a humongous jet of subatomic particles.

Story continues below advertisement

Black holes, which come in different sizes, are formed when very massive stars collapse at the end of their life cycle. Supermassive black holes are the largest kind, growing in mass as they devour matter and radiation and perhaps merging with other black holes.

READ MORE: U of A astronomers discover closest known star in orbit of a black hole

The project’s researchers obtained the first data in April 2017 using telescopes in the U.S. states of Arizona and Hawaii as well as Mexico, Chile, Spain and Antarctica. Since then, telescopes in France and Greenland have been added to the global network. The global network of telescopes has essentially created a planet-sized observational dish.

*with a file from the Canadian Press

Sponsored content

AdChoices